Kolmogorov Complexity and the Recursion Theorem
نویسندگان
چکیده
We introduce the concepts of complex and autocomplex sets, where a set A is complex if there is a recursive, nondecreasing and unbounded lower bound on the Kolmogorov complexity of the prefixes (of the characteristic sequence) of A, and autocomplex is defined likewise with recursive replaced by A-recursive. We observe that exactly the autocomplex sets allow to compute words of given Kolmogorov complexity and demonstrate that a set computes a diagonally nonrecursive (DNR) function if and only if the set is autocomplex. The class of sets that compute DNR functions is intensively studied in recursion theory and is known to coincide with the class of sets that compute fixed-point free functions. Consequently, the Recursion Theorem fails relative to a set if and only if the set is autocomplex, that is, we have a characterization of a fundamental concept of theoretical computer science in terms of Kolmogorov complexity. Moreover, we obtain that recursively enumerable sets are autocomplex if and only if they are complete, which yields an alternate proof of the wellknown completeness criterion for recursively enumerable sets in terms of computing DNR functions. All results on autocomplex sets mentioned in the last paragraph extend to complex sets if the oracle computations are restricted to truth-table or weak truth-table computations, for example, a set is complex if and only if it wtt-computes a DNR function. Moreover, we obtain a set that is complex but does not compute a Martin-Löf random set, which gives a partial answer to the open problem whether all sets of positive constructive Hausdorff dimension compute Martin-Löf random sets. Furthermore, the following questions are addressed: Given n, how difficult is it to find a word of length n that (a) has at least prefix-free Kolmogorov complexity n, (b) has at least plain Kolmogorov complexity n or (c) has the maximum possible prefix-free Kolmogorov complexity among all words of length n. All these questions are investigated with respect to the oracles needed to carry out this task and it is shown that (a) is easier than (b) and (b) is easier than (c). In particular, we argue that for plain Kolmogorov complexity exactly the PA-complete sets compute incompressible words, while the class of sets that compute words of maximum complexity depends on the choice of the universal Turing machine, whereas for prefix-free Kolmogorov complexity exactly the complete sets allow to compute words of maximum complexity.
منابع مشابه
Cs 154 Notes
Part 2. Computability Theory: Very Powerful Models 15 7. Turing Machines: 1/28/14 15 8. Recognizability, Decidability, and Reductions: 1/30/14 18 9. Reductions, Undecidability, and the Post Correspondence Problem: 2/4/14 21 10. Oracles, Rice’s Theorem, the Recursion Theorem, and the Fixed-Point Theorem: 2/6/14 23 11. Self-Reference and the Foundations of Mathematics: 2/11/14 26 12. A Universal ...
متن کاملKolmogorov Complexity and Games
In this survey we consider some results on Kolmogorov complexity whose proofs are based on interesting games. The close relation between Recursion theory, whose part is Kolmogorov complexity, and Game theory was revealed by Andrey Muchnik. In [10], he associated with every statement φ of Recursion theory a game Gφ that has the following properties. First, Gφ is a game with complete information ...
متن کاملRefinment of the "up to a constant" ordering using contructive co-immunity and alike. Application to the Min/Max hierarchy of Kolmogorov complexities
We introduce orderings ≪ F between total functions f, g : N → N which refine the pointwise “up to a constant” ordering ≤ct and also insure that f(x) is often much less than g(x). With such ≪ F ’s, we prove a strong hierarchy theorem for Kolmogorov complexities obtained with jump oracles and/orMax orMin of partial recursive functions. We introduce a notion of second order conditional Kolmogorov ...
متن کاملSub-computable Boundedness Randomness
This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-Löf tests, (2) Kolmogorov complexity, and (3)...
متن کاملKolmogorov Complexity Theory over the Reals
Kolmogorov Complexity constitutes an integral part of computability theory, information theory, and computational complexity theory— in the discrete setting of bits and Turing machines. Over real numbers, on the other hand, the BSS-machine (aka real-RAM) has been established as a major model of computation. This real realm has turned out to exhibit natural counterparts to many notions and resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006